第一资助论文:
1. Chang L., Y. Morioka, S. Behera, J.-J. Luo, H. Xu, and B. Zhou, 2022: What Mainly Drives the Interannual Climate Variability Over the Barents-Kara Seas in Boreal Early Autumn? Journal of Geophysical Research: Atmosphere, 127, e2021JD036216, https://doi.org/10.1029/2021JD036216.
2. Chen H., 2022: Key regions where land surface processes shape the East Asian climate. Atmospheric and Oceanic Science Letters, 15, 100209, https://doi.org/10.1016/j.aosl.2022.100209.
3. Chen J., X. Hu, S. Yang, S. Lin, and Z. Li, 2022: Influence of convective heating over the Maritime Continent on the West Antarctic Climate. Geophysical Research Letters, 49, e2021GL097322, https://doi.org/10.1029/2021GL097322.
4. Chen P., B. Sun, H. Wang, and L. Yang, 2022: Improving the CFSv2 prediction of the Indian Ocean Dipole based on a physical-empirical model and a deep-learning approach. International Journal of Climatology, 42, 9200-9214, https://doi.org/10.1002/joc.7812.
5. Chen W., H. Wu, J. Kimball, L. Alfieri, N. Nanding, X. Li, L. Jiang, W. Wei, Y. Tao, S. Zhao, and W. Zhong, 2022: A coupled river basin-urban hydrological model (DRIVE-Urban) for real-time urban flood modeling. Water Resources Research, 58, e2021WR031709, https://doi.org/10.1029/2021WR031709.
6. Cui J., and T. Li, 2022: Changes in MJO characteristics and impacts in the past century. Journal of Climate, 35, 577-590, https://doi.org/10.1175/JCLI-D-21-0306.1.
7. Dai A., and J. Deng, 2022: Recent Eurasian winter cooling partly caused by internal multidecadal variability amplified by Arctic sea ice-air interactions. Climate Dynamics, 58, 3261-3277, https://doi.org/10.1007/s00382-021-06095-y.
8. Deng J., and A. Dai, 2022: Sea ice-air interactions amplify multidecadal variability in the North Atlantic and Arctic region. Nature Communications, 13, 2100, https://doi.org/10.1038/s41467-022-29810-7.
9. Deng K., C. Azorin-Molina, S. Yang, C. Hu, G. Zhang, L. Minola, and D. Chen, 2022: Changes of Southern Hemisphere westerlies in the future warming climate. Atmospheric Research, 27, 106040, https://doi.org/10.1016/j.atmosres.2022.106040.
10. Deng K., C. Azorin-Molina, S. Yang, C. Hu, G. Zhang, L. Minola, M. S. Vicente-Serrando, and D. Chen, 2022: Shifting of summertime weather extremes in Western Europe during 2012-2020. Advances in Climate Change Research, 13, 218-227, https://doi.org/10.1016/j.accre.2022.01.008.
11. Deng K., W. Liu, C. Azorin-Molina, S. Yang, G. Zhang, L. Minola, and D. Chen, 2022: Terrestrial Stilling Projected to Continue in the Northern Hemisphere Mid-latitudes. Earth’s Future, 10, e2021EF002448, https://doi.org/10.1029/2021EF002448.
12. Dong X., H. Chen, Y. Zhou, S. Sun, C. Chotamonsak, and P. Wangpakapattanawong, 2022: Local and non-local atmospheric effects of abnormal soil moisture over Indochina during May and June. Quarterly Journal of the Royal Meteorological Society, 148, 2903-2926, https://doi.org/10.1002/qj.4341.
13. Du X., H. Chen, X. Ge, and Q. Li. 2022: Urban Impact on landfalling tropical cyclone precipitation: a numerical study of typhoon Rumbia (2018). Advances in Atmospheric Sciences, https://doi.org/10.1007/s00376-022-2100-8. (online)
14. Du Y., J. Zhang, S. Zhao, and Z. Chen, 2022: A mechanism of spring Barents Sea ice effect on the extreme summer droughts in northeastern China. Climate Dynamics, 58, 1033-1048, https://doi.org/10.1007/s00382-021-05949-9.
15. Fan L., S. Yang, J. Hu, and T. Li, 2022: Relationship between the Intraseasonal Oscillation over Mid-High-Latitude Eurasia and the Stratospheric Sudden Warming Event in February 2018. Remote Sensing, 14, 1873, https://doi.org/10.3390/rs14081873.
16. Fu Z., P.-C. Hsu, J. Li, J. Cao, Y.-M. Yang, and F. Liu, 2022: Multidecadal changes in zonal displacement of tropical Pacific MJO variability modulated by North Atlantic SST. Journal of Climate, 35, 5951-5966, https://doi.org/10.1175/JCLI-D-21-0819.1.
17. Gao Y., P.-C. Hsu, S. Che, C. Yu, and S. Han, 2022: Origins of intraseasonal precipitation variability over North China in the rainy season. Journal of Climate, 35, 6219-6236, https://doi.org/10.1175/JCLI-D-21-0832.1.
18. Ge Z.-A., L. Chen, T. Li, and L. Wang, 2022: How Frequently Will the Persistent Heavy Rainfall over the Middle and Lower Yangtze River Basin in Summer 2020 Happen under Global Warming?Advances in Atmospheric Science, 39, 1673–1692, https://doi.org/10.1007/s00376-022-1351-8.
19. Gong Y.-F., F. Zhou, C. Wang, and J. Shi, 2022: Interdecadal Change in the Relationship between the Winter Siberian High and Summer Tropical Cyclone Genesis Frequency over the Western North Pacific. Atmosphere, 13, 1342. https://doi.org/10.3390/atmos13091342.
20. Hamadalnel M., Z. Zhu, A. Gaber, V. Iyakaremye, and B. Ayugi. 2022: Possible changes in Sudan's future precipitation under the high and medium emission scenarios based on bias adjusted GCMs. Atmospheric Research, 269, 106036, https://doi.org/10.1016/j.atmosres.2022.106036.
21. Hamadalnel M., Z. Zhu, R. Lu, M. Almazroui, and S. Shahid, 2022: Evaluating the aptitude of GCMs from CMIP5 and CMIP6 in capturing the historical observations of monsoon rainfall over Sudan from 1946-2005. International Journal of Climatology,42, 2717-2738, https://doi.org/10.1002/joc.7387.
22. He S., S. Yang, and D. Chen, 2022: Accurate Attribution and Seasonal Prediction of Climatic Anomalies Using Causal Inference Theory. Journal of Climate, 35, 4111-4123,https://doi.10.1175/JCLI-D-22-0033.1.
23. Hu F., and T. Li, 2022: Effect of vertical overturning circulation scale and moist static energy tendency on MJO phase speed. Atmospheric and Oceanic Science Letters, 15, 100150, https://doi.org/10.1016/j.aosl.2022.100150.
24. Hu S., W. Zhang, X. Geng, and J. Sun, 2022: Dominant modes of interannual variability of winter fog days over eastern China and their association with major SST variability.Climate Dynamics, 58, 413-426, https://doi.org/10.1007/s00382-021-05915-5.
25. Hua W., A. Dai, and H. Chen, 2022: Little influence of Asian anthropogenic aerosols on summer temperature in Central East Asia since 1960. Geophysical Research Letters, 49, e2022GL097946, https://doi.org/10.1029/2022GL097946.
26. Hua W., A. Dai, and M. Qin, 2022: Reconciling roles of external forcing and internal variability in Indian Ocean decadal variability since 1920. Geophysical Research Letters, 49, e2021GL097198, https://doi.org/10.1029/2021GL097198.
27. Huang Y., H. Wang and P. Zhang, 2022: A skillful method for precipitation prediction over eastern China. Atmospheric and Oceanic Science Letters, 15, 100133, https://doi.org/10.1016/j.aosl.2021.100133
28. Huo L., J. Wang, D. Jin, J.-J. Luo, H. Shen, X. Zhang, J. Min, and Y. Xiao, 2022: Increased summer electric power demand in Beijing driven by preceding spring tropical North Atlantic warming. Atmospheric and Oceanic Science Letters, 15, 100146, https://doi.org/10.1016/j.aosl.2021.100146.
29. Ji L., and Fan K, 2022: Interannual relationship between haze days in December–January and satellite-based leaf area index in August–September over Central North China. Remote Sensing, 14, 884, https://doi.org/10.3390/rs14040884.
30. Jiang L., T. Li, and Y.-G. Ham, 2022: Critical role of tropical North Atlantic SSTA in boreal summer in affecting subsequent ENSO evolution. Geophysical Research Letters, 49, e2021GL097606, https://doi.org/10.1029/2021GL097606.
31. Kong Y., Y. Wu, X. Hu, Y. Li, and S. Yang, 2022: Uncertainty in projections of the South Asian summer monsoon under global warming by CMIP6 models: Role of tropospheric meridional thermal contrast. Atmospheric and Oceanic Science Letters, 15, 100145, https://doi.org/10.1016/j.aosl.2021.100145.
32. Li C., S. Yang, W. Mo, and J. Zhang, 2022: Seasonal prediction for May rainfall over Southern China Based on the NCEP CFSv2. Journal of Tropical Meteorology, 28, 29-44, https://doi.org/10.46267/j.1006-8775.2022.003.
33. Li C., S. Yang, W. Mo, and J. Zhang, 2022: Seasonal predictions for May rainfall over southern China by the NCEP CFSv2, Journal of Tropical Meteorology, 28, 29–44, https://doi.org/10.16555/j.1006-8775.2019.04.003.
34. Li H., and K. Fan, 2022. Dominant patterns of winter surface air temperature over Central Asia and their connection with atmospheric circulation. Atmospheric and Oceanic Science Letters, 15, 100210, https://doi.org/10.1016/j.aosl.2022.100210.
35. Li H., B. Sun, H. Wang, and X. Yuan, 2022: Joint effects of three oceans on the 2020 super mei-yu. Atmospheric and Oceanic Science Letters, 100127, https://doi.org/10.1016/j.aosl.2021.100127.
36. Li T., Y. Wang, B. Wang, M. Ting, Y. Ding, Y. Sun, C. He, and G. Yang, 2022: Distinctive South and East Asian Monsoon circulation responses to global warming. Science Bulletin, 67, 762-770, https://doi.org/10.1016/j.scib.2021.12.001.
37. Li X., J. Yu, and S. Liu, 2022: Structure of the Western Tibetan Vortex inconsistent with a thermally-direct circulation, Climate Dynamics, 58, 2213–2225, https://doi.org/10.1007/s00382-021-06001-6.
38. Li Y., J. Wu, J.-J. Luo, and Y. Yang, 2022: Evaluating the Eastward Propagation of the MJO in CMIP5 and CMIP6 Models Based on a Variety of Diagnostics. Journal of Climate, 35, 1719-1743, https://doi.org/10.1175/JCLI-D-21-0378.1.
39. Liao X., T. Li, and C. Ma, 2022: Moist Static Energy and Secondary Circulation Evolution Characteristics During Rapid Intensification of Super Typhoon Yutu (2007). Atmosphere, 13, 1105, https://doi.org/10.3390/atmos13071105.
40. Liu C., W. Zhang, F.-F. Jin, M. Stuecker, and L. Geng, 2022: Equatorial origin of the observed tropical Pacific quasi-decadal variability from ENSO nonlinearity. Geophysical Research Letters, 49, e2022GL097903, https://doi.org/10.1029/2022GL097903.
41. Liu S., J. Wang, H. Wang, and Y. Wu, 2022: Post-processing of hydrological model simulations using the convolutional neural network and support vector regression. Hydrology Research, 53, 605-621, https://doi.org/10.2166/nh.2022.004.
42. Liu Y., and H. Chen, 2022: Future warming accelerates lake variations in the Tibetan Plateau. International Journal of Climatology, 42, 8687-8700, https://doi.org/10.1002/joc.7760.
43. Long Y., J. Li, Z. Zhu, and J. Zhang. 2022: Predictability of the anomaly pattern of summer extreme high-temperature days over southern China. Climate Dynamics, 59, 1027-1041, https://doi.org/10.1007/s00382-022-06170-y.
44. Lu Z., W. Dong, B. Lu, N. Yuan, Z. Ma, M. Bogachev, and J. Kurths, 2022: Early warning of the Indian Ocean Dipole using climate network analysis. Proceedings of the National Academy of Sciences, 119, e2109089119, https://doi.org/10.1073/pnas.2109089119.
45. Ma C., and T. Li, 2022: An Empirical Model of Tropical Cyclone Intensity Forecast in the Western North Pacific. Journal of Meteorological Research, 36, 691-702, https://doi.org/10.1007/s13351-022-2016-3.
46. Ma J., H. Xu, J.-J. Luo, and S. Chen, 2022: Impact of tropical Atlantic SST anomaly on ENSO in the NUIST-CFS1.0 Hindcasts. International Journal of Climatology, 42, 6055-6071, https://doi.org/10.1002/joc.7577.
47. Ma Q., Y. Liu, T. Qiu, T. Huang, T. Deng, Z. Hu, and T. Cui, 2022: Satellite-Observed Four-Dimensional Spatiotemporal Characteristics of Maritime Aerosol Types over the Coastal Waters of the Guangdong-Hong Kong-Macao Greater Bay Area and the Northern South China Sea. Remote Sensing, 14, 5464, https://doi.org/10.3390/rs14215464.
48. Ma Y., H. Yang, Z. Deng, Y. Qin, J. Li, and X. Wei, 2022: Intra-seasonal variability of autumn rainfall in the Yangtze River Delta and its related atmospheric circulations. Atmospheric Research, 278, 106363, https://doi.org/10.1016/j.atmosres.2022.106363.
49. Murakami H., T. Delworth, W. Cooke, S. Kapnick, and P.-C. Hsu, 2022: Increasing frequency of anomalous precipitation events in Japan detected by a deep learning autoencoder. Earth's Future, 10, e2021EF002481, https://doi.org/10.1029/2021EF002481.
50. Qian Y., P.-C. Hsu, H. Wang, and M. Duan, 2022: Distinct influential mechanisms of the warm pool Madden-Julian Oscillation on persistent extreme cold events in Northeast China. Atmospheric and Oceanic Science Letters, 15, 100226, https://doi.org/10.1016/j.aosl.2022.100226.
51. Qian Y., P.-C. Hsu, J. Yuan, Z. Zhu, H. Wang, and M. Duan, 2022: Effects of subseasonal variation in the East Asian monsoon system on the summertime heat wave in western North America in 2021. Geophysical Research Letters, 49, e2021GL097659. https://doi.org/10.1029/2021GL097659.
52. Ren Q., W. Wei, M. Lu, and S. Yang, 2022: Dynamical analysis of the winter Middle East jet stream and comparison with the East Asian and North American jet streams. Journal of Climate, 35, 4455-4468, https://doi.org/10.1175/JCLI-D-21-0664.1.
53. RunaA, T. Cui, S. Qing , T. Wei , B. Mu, Y. Xiao, Y. Chen, Y. Bao, and J. Zhang, 2022: Decade-low aerosol levels over the Bohai and Yellow Seas amid the COVID-19 lockdown. International Journal of Applied Earth Observations and Geoinformation, 112, 102905, https://doi.org/10.1016/j.jag.2022.102905.
54. Sasikumar K., D. Nath, X. Wang, W. Chen, and S. Yang, 2022: Recent enhancement and prolonged occurrence of MJO over the Indian Ocean and their impact on Indian summer monsoon rainfall. Climate Dynamics, 59, 2585-2598, https://doi.org/10.1007/s00382-022-06230-3.
55. Shi N., Y. Wang, and T.Suolang, 2022: Energetics of Boreal Wintertime Blocking Highs around the Ural Mountains. Journal of Meteorological Research, 36, 154-174, https://doi.org/10.1007/s13351-022-1069-7.
56. Song Y., A. Huang, and H. Chen, 2022: The storage of antecedent precipitation and air temperature signals in soil temperature over China. Journal of Hydrometeorology, 23, 377-388, https://doi.org/10.1175/JHM-D-21-0126.1.
57. Tan Y., S. Yang, F. Zwiers, Z. Wang, and Q. Sun, 2022: Moisture budget analysis of extreme precipitation associated with different types of atmospheric rivers over western North, Climate Dynamics, 58, 793–809, https://doi.org/10.1007/s00382-021-05933-3.
58. Tian B., and K. Fan, 2022: New downscaling prediction models for spring drought in China. International Journal of Climatology, 42, 6960-6975, https://doi.org/10.1002/joc.7623.
59. Wahiduzzaman M., M. Ali, K. Cheung, J.-J. Luo, S. Tang, P. Bhaskaran, C. Yuan, M. Bilal, Z. Qiu, and M. Almazroui, 2022: Impacts of aerosols and climate modes on tropical cyclone frequency over the North Indian Ocean: a statistical link approach. Journal of Climate, 35, 2549-2564,https://doi.org/10.1175/JCLI-D-21-0228.1.
60. Wan Y., Z. Yin, Q. Huo, B. Zhou, and H. Wang, 2022: Weather extremes led to large variability in O3 pollution and associated premature deaths in east of China. Frontiers in Earth Science, 10, 947001, https://doi:10.3389/feart.2022.947001.
61. Wang B., A. Spessa, P. Feng, X. Hou, C. Yue, J.-J. Luo, P. Ciais, C. Waters, A. Cowie, R. Nolan, T. Nikonovas, H. Jin, H. Walshaw, J. Wei, X. Guo, D. Liu, and Q. Yu, 2022: Extreme fire weather is the major driver of severe bushfires in southeast Australia. Science Bulletin, 67, 655-664, https://doi.org/10.1016/j.scib.2021.10.001.
62. Wang C., B. Wang, L. Wu, and J.-J. Luo, 2022: A Seesaw Variability in Tropical Cyclone Genesis between the Western North Pacific and the North Atlantic Shaped by Atlantic Multidecadal Variability. Journal of Climate, 35, 2479-2489, https://doi.org/10.1175/JCLI-D-21-0529.1.
63. Wang H., Y. Dai, S. Yang, T. Li, J.-J. Luo, B. Sun, M. Duan, J. Ma, Z. Yin, Y. Huang, 2022: Predicting climate anomalies: a real challenge. Atmospheric and Oceanic Science Letters, 15, 100115, https://doi.org/10.1016/j.aosl.2021.100115.
64. Wang J., S. Yang, Z. Li, M. Lu, Z. Wang, and G. Wu, 2022: Optimal meridional positions of the Tibetan Plateau for intensifying the Asian summer monsoon. Journal of Climate, 35, 3861-3875, https://doi.org/10.1175/JCLI-D-21-0664.1.
65. Wang L., and K. Fan, 2022: Synoptic and climatic conditions of an extreme snowstorm event over Northeast China and its climate predictability. Frontiers in Earth Science, 10, 835061, https://doi.org/10.3389/feart.2022.835061.
66. Wang T., and T. Li, 2022: Diversity of MJO Initiation Regions and Processes. Journal of Climate, 35, 3121-3140, https://doi.org/10.1175/JCLI-D-21-0816.1.
67. Wei W., Q. Ren, M. Lu, and S. Yang, 2022: Zonal extension of the Middle East jet stream and its influence on the Asian monsoon. Journal of Climate, 35, 4741-4751, https://doi.org/10.1175/JCLI-D-21-0697.1.
68. Xie J., P.-C. Hsu, P. Ray, K. Li, and W. Yu, 2022: Mechanism of MJO-modulated triggering on the rainy season onset over Indian subcontinent. Monthly Weather Review, 150, 1937-1951, https://doi.org/10.1175/MWR-D-21-0275.1.
69. Xu J., J.-J. Luo, and C. Yuan, 2022: Tropical Indian Ocean warming contributes to Arctic warming. Geophysical Research Letters, 49, e2022GL101339, https://doi.org/10.1029/2022GL101339
70. Xu X., S. He, B. Zhou, and H. Wang, 2022: Atmospheric contributions to the reversal of surface temperature anomalies between early and late winter over Eurasia. Earth's Future, 10, e2022EF002790,https://doi.org/10.1029/2022EF002790.
71. Xuan Z., W. Zhang, F. Jiang, and F.-F. Jin, 2022: Effective ENSO Amplitude Forecasts Based on Oceanic and Atmospheric Preconditions. Journal of Climate, 35, 3279-3291, https://doi.org/10.1175/JCLI-D-21-0383.1.
72. Yang H. and K. Fan, 2022: Reversal of monthly East Asian winter air temperature in 2020/21 and its Predictability. Atmospheric and Oceanic Science Letters, 15, 100142, https://doi.org/10.1016/j.aosl.2021.100142.
73. Yang H., J. Rao, and H. Chen, 2022: Possible Lagged Impact of the Arctic Sea Ice in Barents–Kara Seas on June Precipitation in Eastern China. Frontiers in Earth Science, 10, 886192, https://doi.org/10.3389/feart.2022.886192.
74. Yang Y.-M., J.-H. Park, S.-I. An, S.-W. Yeh, Z. Zhu, F. Liu, J. Li, J-Y. Lee, and B. Wang. 2022: Increased Indian Ocean-North Atlantic Ocean warming chain under greenhouse warming. Nature Communication, 13, 3978. https://doi.org/10.1038/s41467-022-31676-8.
75. Yin Z., H. Wang, H. Liao, K. Fan, and B. Zhou, 2022: Seasonal to Interannual Prediction of Air Pollution in China: Review and Insight. Atmospheric and Oceanic Science Letters, 15, 100131, https://doi.org/10.1016/j.aosl.2021.100131.
76. Yin Z., M. Duan, Y. Li, T. Xu, and H. Wang, 2022: Predicting gridded winter PM2.5 concentration in east of China. Atmospheric Chemistry and Physics, 22, 11173-11185, https://doi.org/10.5194/acp-22-11173-2022.
77. Yin Z., Y. Wan, Y. Zhang, and H. Wang, 2022: Why super sandstorm 2021 in North China? National Science Review, 9, nwab165. https://doi.org/10.1093/nsr/nwab165.
78. Yu E., R. Bai, X. Chen, and L. Shao, 2022: Impact of physical parameterizations on wind simulation with WRF V3.9.1.1 under stable conditions at PBL gray-zone resolution: a case study over the coastal regions of North China. Geoscientific Model Development, 15, 8111-8134, https://doi.org/10.5194/gmd-2022-53.
79. Yuan C., W. Zhang, Y. Zhong, X. Lu, J. Liu, and M. Wahiduzzaman, 2022: North Atlantic Forcing of Autumn Drought in Southwest China. Atmospheric and Oceanic Science Letters, 15, 100152, https://doi.org/10.1016/j.aosl.2022.100152.
80. Yuan N., F. Xiong, and E. Xoplaki, 2022: A new approach to correct the overestimated persistence in tree-ring width based precipitation reconstructions,Climate Dynamics, 58, 2681–2692, https://doi.org/10.1007/s00382-021-06024-z.
81. Yuan N., F. Xiong, E. Xoplaki, W. He, and J. Luterbacher, 2022: A new approach to correct the overestimated persistence in tree-ring width based precipitation reconstructions, Climate Dynamics, 58, 2681-2692, https://doi.org/10.1007/s00382-021-06024-z.
82. Zhang D., N. Shi, and T. Suolang, 2022: Mechanisms of the subseasonal influences of Scandinavian events on winter surface air temperature over Eastern China. Atmospheric Research, 268, 105994, https://doi.org/10.1016/j.atmosres.2021.105994.
83. Zhang J., R. Hu, Q. Ma, and M. Niu, 2022: The Warming of the Arabian Sea Induced a Northward Summer Monsoon over the Tibetan Plateau. Journal of Climate, 35, 3941-3954, https://doi.org/10.1175/JCLI-D-22-0273.1.
84. Zhang L., X. Yang and J. Zhao, 2022: Impact of the Spring North Atlantic Oscillation on the Northern Hemisphere Tropical Cyclone Genesis Frequency. Frontiers in Earth Science, 10, 829791, https://doi.org/10.3389/feart.2022.829791.
85. Zhang S., L. Zhou, L. Zhang, Y. Yang, Z. Wei, S. Zhou, D. Yang, X. Yang, X. Wu, Y. Zhang, X. Li, Y. Dai, 2022: Reconciling disagreement on global river flood changes in a warming climate. Nature Climate Change,12, 1160-1167, https://doi.org/10.1038/s41558-022-01539-7.
86. Zhang T., C.-Y. Tam, N.-C. Lau, J. Wang, S. Yang, J. Chen, W. Yu, X. Jiang, and P. Gao, 2022: Influences of the boreal winter Arctic Oscillation on the peak-summer compound heat waves over the Yangtze-Huaihe River basin: The North Atlantic capacitor effect. Climate Dynamics, 59, 2331-2343, https://doi.org/10.1007/s00382-022-06212-5.
87. Zhao C., T. Li, and M. Bi, 2022: Role of a Pacific Easterly Wave in the Genesis of Hagupit (2008). Weather and Forecasting, 37, 2183-2194, https://doi.org/10.1175/WAF-D-21-0105.1.
88. Zhao J., S. He, and H. Wang, 2022: Constraining CMIP6 projections of an ice‐free Arctic using a weighting scheme. Earth's Future, 10, e2022EF002708, https://doi.org/10.1029/2022EF002708.
89. Zhao J., S. He, and H. Wang2022: Historical and future runoff changes in the Yangtze River Basin from CMIP6 models constrained by a weighting strategy. Environmental Research Letters, 17, 024015, https://doi.org/10.1088/1748-9326/ac3f61.
90. Zheng M., and X. Li, Distinct patterns of monthly Southern Annular Mode events, Atmospheric and Oceanic Science Letters, 15, 100206, https://doi.org/10.1016/j.aosl.2022.100206.
91. Zhu J., Y. Yu, Z. Guan, and X. Wang, 2022: Dominant Coupling Mode of SST in Maritime Continental Region and East Asian Summer Monsoon Circulation. Journal of Geophysical Research: Atmosphere, 127, e2022JD036739, https://doi.org/10.1029/2022JD036739.
92. Zhu S., X. Dong, Y. Qi, J. Wei, and H. Chen, 2022: The predictability of snow depth at the North Hemisphere originated from persistence and oceanic forcing. Climate Dynamics, https://doi.org/10.1007/s00382-022-06356-4. (online)
93. 陈海山, 杜新观, 孙悦, 2022: 陆面过程与天气研究. 地学前缘, 29, 382-400, https://doi.org/10.13745/j.esf.sf.2021.9.59.
94. 吴玉婷, 杨崧, 胡晓明, 王子谦, 鲁萌萌, 肖子牛, 2022: 青藏高原与周边地区近四十年区域夏季地表气温变化趋势的异同及归因分析. 大气科学, 46, 1253-1266, https://doi.org/10.3878/j.issn.1006-9895.2205.21197.
95. Chen L., Y. Li, Z.-A. Ge, B. Lu, L. Wang, X. Wei, M. Sun, Z. Wang, T. Li, and J.-J. Luo, 2022: Causes of the Extreme Drought in Late Summer-autumn 2019 Over Eastern China and its Future Risk. Journal of Climate, https://doi.org/10.1175/JCLI-D-22-0305.1. (online)
96. Gong Y., and T. Li, 2022: Comparison of Southward Shift Mechanisms of Equatorial Westerly Anomalies between EP and CP El Niño. Climate Dynamics, https://doi.org/10.1007/s00382-022-06346-6. (online)
97. Jiang L., T. Li, and Y.-G. Ham, 2022: Asymmetric impacts of El Niño and La Niña on Equatorial Atlantic warming. Journal of Climate, https://doi.org/10.1175/JCLI-D-22-0158.1. (online)
98. Liu Y., and S. Yang, 2022: The impact of mid‑high‑latitude Eurasian ISO on soil moisture anomaly in North China during boreal summer. Climate Dynamics, https://doi.org/10.1007/s00382-022-06578-6. (online)
99. Luo H., Z. Wang, S. Yang, and W. Hua, 2022: Revisiting the impact of Asian large-scale orography on the summer precipitation in Northwest China and surrounding arid and semi-arid regions. Climate Dynamics, https://doi.org/10.1007/s00382-022-06301-5. (online)
100. Ma Y., J. Sun, T. Dong, W. Yu and W. Dong, 2022: More profound impact of CP ENSO on Australian spring rainfall in recent decades. Climate Dynamics, https://doi.org/10.1007/s00382-022-06485-w. (online)
101. Wang J., X. Li, S. Liu, T. Liu, Y. Dai, S. Yang, and H. Fowler, 2022: Leading modes of wind field variability over the western Tibet Plateau. Climate Dynamics, https://doi.org/10.1007/s00382-022-06358-2.(online)
102. Wang L., J. Jiang, T. Li, X. Zhou, and Z. Chen, 2022: Three distinct circulation patterns that induce enhanced intraseasonal precipitation events over South China in boreal winter. Climate Dynamics, https://doi.org/10.1007/s00382-022-06478-9. (online)
103. Wang X., T. Li, and S. Yao, 2022: Distinctive rainfall evolutions in East Asia between super and regular El Niño events during their decaying summers. Journal of Climate, https://doi.org/10.1175/JCLI-D-22-0143.1.(online)
104. Wu J., J. Li, Z. Zhu, and P-C. Hsu. 2022: Factors determining the subseasonal prediction skill of summer extreme rainfall over southern China. Climate Dynamics, https://doi.org/10.1007/s00382-022-06326-w. (online)
105. Wu Y., X. Hu, Z. Li, M. Cai, M. Lu, and S. Yang, 2022: Remote effect of model systematic bias in tropical SST on the cold bias over the Tibetan Plateau. Climate Dynamics, https://doi.org/10.1007/s00382-022-06421-y. (online)
106. Yang G., and T. Li, 2022: Increased synoptic variability along the subtropical Meiyu front under global warming. Climate Dynamics, https://doi.org/10.1007/s00382-022-06554-0. (online)
107. Yang Y., Z. Zhu, X. Shen, L. Jiang, and T. Li, 2022: The influences of Atlantic sea surface temperature anomalies on the ENSO-independent interannual variability of East Asian summer monsoon rainfall. Journal of Climate, https://doi.org/10.1175/JCLI-D-22-0061.1. (online)
108. Yin Z., Y. Li, Y. Zhang, and H. Wang, 2022: Evident Differences of Haze Days between December and January in North China and Possible Relationships with Preceding Climate Factors. International Journal of Climatology, https://doi.org/10.1002/joc.7778. (online)
109. Zhang T., X. Jiang, S. Yang, J. Chen, and Z. Li, 2022: A predictable prospect of the South Asian summer monsoon. Nature Communications, https://doi.org/10.1038/s41467-022-34881-7. (online)
110. Zhao J., S. He, and H. Wang, 2022: Role of atmosphere-ocean-ice interaction in the linkage between December Bering Sea ice and subsequent February surface air temperature over North America. Journal of Climate, https://doi.org/10.1175/JCLI-D-22-0265.1. (online)
111. Zhu Z., R. Lu, S. Fu, and H. Chen. 2022: Alternation of the atmospheric teleconnections associated with the Northeast China spring rainfall during a recent 60-years period. Advances in Atmospheric Sciences, https://doi.org/10.1007/s00376-022-2024-3. (online)
112. 高铭祥, 杨双艳, 王强, 李天明, 2022: 两类厄尔尼诺背景下MJO对太平洋阻塞频率的调节作用. 大气科学, https://doi.org/10.3878/j.issn.1006-9895.2112.21105. (online)
113. 马潇祎, 范可, 2022: 近几十年中国西北夏秋季干湿年代际变化及成因初步分析. 大气科学, https://doi.org/10.3878/j.issn.1006-9895.2112.21115. (online)
114. 孙博, 王会军, 黄艳艳, 尹志聪, 周波涛, 段明铿, 2022: 2022年夏季中国高温干旱气候特征及成因探讨. 大气科学学报, https://doi.org/10.13878/j.cnki.dqkxxb.20220916003. (online)
115. 王腾, 孙博, 王会军, 多典洛珠, 卓永, 2022: 三江源地区冬季降水年代际变化特征及相关物理机制. 大气科学, https://doi.org/10.3878/j.issn.1006-9895.2204.22034. (online)
116. 温昕晟, 杨双艳, 高铭祥, 李天明, 2022: 夏季欧亚中高纬大气ISO与欧洲阻塞频率的联系及其对极端高温事件的协同作用. 大气科学, https://doi.org/10.3878/j.issn.1006-9895.2207.22077. (online)
117.周明颉, 简茂球, 2022: 热带印度洋及周边海温对ENSO响应的年代际变化. 中山大学学报(自然科学版)(中英文), https://doi.org/10.13471/j.cnki.acta.snus.2022D012. (online)
第二资助论文:
1. Asfaw T., and J.-J. Luo, 2022: Seasonal Prediction of Summer Precipitation over East Africa Using NUIST-CFS1.0. Advances in Atmospheric Sciences, 39, 355-372, https://doi.org/10.1007/s00376-021-1180-1.
2. Chen H., E. Schneider, and Z. Zhu. 2022: Internal atmospheric variability of net surface heat flux in reanalyses and CMIP5 AMIP simulations. International Journal of Climatology,42, 63-80, https://doi.org/10.1002/joc.7232.
3. Chen H., W. He, J. Sun, and L. Chen, 2022: Increases of extreme heat-humidity days endanger future populations living in China. Environmental Research Letters, 17, 064013, https://doi.org/10.1088/1748-9326/ac69fc.
4. Chen P., M. Jian, and S. Gao, 2022: Relative Roles of Intraseasonal and Above-seasonal Components in the South China Sea Summer Monsoon Onset. Journal of Tropical Meteorology, 28, 183-193, https://doi. org /10.46267/j.1006-8775.2022.014.
5. He W., B. Sun, J. Ma, and H. Wang, 2022: Interdecadal variation in atmospheric water vapour content over East Asia during winter and the relationship with autumn Arctic sea ice. International Journal of Climatology, 42, 8868-8881, https://doi.org/10.1002/joc.7779.
6. Hu J., X. Gao, R. Ren, J.-J. Luo, J. Deng, and H. Xu, 2022: On the relationship between the stratospheric quasi-biennial oscillation and summer precipitation in northern China. Geophysical Research Letters, 49, e2021GL097687, https://doi.org/10.1029/2021GL097687.
7. Hu Y., X. Wang, J.-J. Luo, D. Wang, H. Yan, C. Yuan, and X. Lin, 2022: Forecasts of MJO during DYNAMO in a Coupled Tropical Channel Model: Impact of Planetary Boundary Layer Schemes. Atmosphere,13, 666, https://doi.org/10.3390/atmos13050666.
8. Hu Y., X. Wang, J.-J. Luo, D. Wang, H. Yan, C. Yuan, and X. Lin, 2022: Forecasts of MJO during DYNAMO in a coupled tropical channel model, Part I: Impact of parameterization schemes. International Journal of Climatology, 42, 6771-6792, https://doi.org/10.1002/joc.7610.
9. Jiang F., and W. Zhang, 2022: Understanding the Complicated Relationship Between ENSO and Wintertime North Tropical Atlantic SST Variability. Geophysical Research Letters, 49, e2022GL097889, https://doi.org/10.1029/2022GL097889.
10. Li H., K. Fan, H. Li, and Z. Xu, 2022: Impacts of central tropical Pacific SST on the reversal of December and January surface air temperature anomalies over Central Asia. Frontiers in Earth Science, 10, 873040, https://doi.org/10.3389/feart.2022.873040.
11. Li Y., Y. Deng, H.-N. Cheung, W. Zhou, S. Yang and H. Zhang, 2022: Amplifying subtropical hydrological transition over China in early summer tied to weakened mid-latitude synoptic disturbances. npj Climate and Atmospheric Science, 5, 40, https://doi.org/10.1038/s41612-022-00259-1.
12. Liu C., C. Hu, S. Yang, L. Lin, and Z. Wu, 2022: Super East Asian monsoon Mei-yu in June and July 2020 tied to dissimilar-shifting upper-level westerlies. Atmospheric Research, 274, 106213, https://doi.org/10.1016/j.atmosres.2022.106213.
13. Liu S., X. Zeng, Y. Dai, H. Yuan, N. Wei, Z. Wei, X. Lu, and S. Zhang, 2022: A Surface Flux Estimation Scheme Accounting for Large‐Eddy Effects for Land Surface Modeling. Geophysical Research Letters, 49, e2022GL101754, https://doi.org/10.1029/2022GL101754.
14. Ren Q., F. Liu, B. Wang, S. Yang, H. Wang, and W. Dong, 2022: Origins of the intraseasonal variability of East Asian summer precipitation. Geophysical Research Letters, 49, e2021GL096574, https://doi.org/10.1029/2021GL096574.
15. Shan Q., and K. Fan, 2022: The transition of stratospheric polar vortex intensity: A case study of winter 1987/88. Journal of Geophysical Research: Atmospheres, 127, e2022JD036511. https://doi.org/10.1029/2022JD036511.
16. Song Y., H. Chen, and J. Yang, 2022: The dominant modes of spring land surface temperature over western Eurasia and their possible linkages with large-scale atmospheric teleconnection patterns. Journal of Geophysical Research: Atmospheres, 127, e2021JD035720, https://doi.org/10.1029/2021JD035720.
17. Wahiduzzaman M., K. Cheung, J.-J. Luo, and P. Bhaskaran, 2022: A spatial model for predicting North Indian Ocean tropical cyclone intensity: Role of sea surface temperature and tropical cyclone heat potential. Weather and Climate Extremes, 36, 100431, https://doi.org/10.1016/j.wace.2022.100431.
18. Wahiduzzaman M., K. Cheung, J.-J. Luo, P. Bhaskaran, S. Tang, and C. Yuan, 2022: Impact assessment of Indian Ocean Dipole on the North Indian Ocean tropical cyclone prediction using a Statistical model. Climate Dynamics, 58, 1275-1292, https://doi.org/10.1007/s00382-021-05960-0.
19. Wang W., S. Yang, T. Zhang, Q. Li, and W. Wei, 2022: Sub-seasonal prediction of the South China Sea summer monsoon onset in the NCEP Climate Forecast System version 2. Advances in Atmospheric Sciences, 39, 1969-1981, https://doi.org/10.1007/s00376-022-1403-0.
20. Wang W., T. Li, F. Xin, and Z. Zhu, 2022: An Objective Method for Defining the Meiyu Onset in Lower Reach of Yangtze River Basin. Journal of Meteorological Research, 36, 841-852, https://doi.org/10.1007/s13351-022-2069-3.
21. Wei J., B. Lu, Y. Song, Q. Jin, Y. Yang, Q. Chen, and H. Chen, 2022: Impact of aerosol radiative effect on the diurnal cycle of summer precipitation over North China: distinct results from simulations with parameterized versus explicit convection. Geophysical Research Letters, 49, e2022GL098795, https://doi.org/10.1029/2022GL098795.
22. Wen N., S. Liu, and L. Li, 2022: Diagnosing the dynamic and thermodynamic effects for the exceptional 2020 summer rainy season in the Yangtze River Valley. Journal of Meteorological Research, 36, 26-36, https://doi.org/10.1007/s13351-022-1126-2.
23. Yan Z., B. Wu, T. Li, and G. Tan, 2022: Mechanisms Determining Diversity of ENSO-Driven Equatorial Precipitation Anomalies. Journal of Climate, 35, 923-939, https://doi.org/10.1175/JCLI-D-21-0363.1.
24. Yang J., and H. Chen, 2022: Influences of spring land surface thermal anomalies over west Asia on Indian early summer monsoon activity and its pathway. Journal of Climate, 35, 6051-6074, https://doi.org/10.1175/JCLI-D-21-0916.1.
25. Ying W., H. Yan, and J.-J. Luo, 2022: Seasonal Predictions of Summer Precipitation in the Middle-lower Reaches of the Yangtze River with Global and Regional Models Based on NUIST-CFS1.0. Advances in Atmospheric Sciences, 39, 1561-1578, https://doi.org/10.1007/s00376-022-1389-7.
26. Zhang M., D. Jin, X. Wang, L. Chen, J.-J. Luo, and Z. Wang, 2022: Seasonal transition of precedent Indian Ocean basin mode and subsequent Indian Ocean Dipole without El Niño–Southern Oscillation impact. International Journal of Climatology, 42, 9023-9031, https://doi.org/10.1002/joc.7793.
27. Zhang T., Y. Deng, J. Chen, S. Yang, P. Gao, and H. Zhang, 2022: Disentangling physical and dynamical drivers of the 2016/17 record-breaking warm winter in China. Environmental Research Letters, 17, 074024, https://doi.org/10.1088/1748-9326/ac79c1.
28. Zhang W., Z. Yu, F. Jiang, X. Geng, and R. Zhang, 2022: Important role of the ENSO combination mode in the maintenance of the anomalous anticyclone over the western North Pacific in boreal summer. Science China Earth Sciences, 65, 1379-1387, https://doi.org/10.1007/s11430-021-9908-5.
29. Zhao C., X. Geng, W. Zhang, and L. Qi, 2022: Atlantic Multidecadal Oscillation Modulates ENSO Atmospheric Anomaly Amplitude in the Tropical Pacific. Journal of Climate, 35, 3891-3903, https://doi.org/10.1175/JCLI-D-21-0603.1.
30. Zhao S., J. Zhang, Y. Du, R. Ji, and M. Liu, 2022: Modulation of coupled modes of Tibetan Plateau heating and Indian summer monsoon on summer rainfall over Central Asia. Journal of Climate, 35, 1441-1458, https://doi.org/10.1175/JCLI-D-20-0813.1.
31. Zhou H., and K. Fan, 2022: Decadal change of the linkage between sea ice over the Barents–Kara Seas in November–December and the stratospheric polar vortex in subsequent January. Journal of Meteorological Research, 36, 601-617,https://doi.org/10.1007/s13351-022-1225-0.
32. Zhou H., and K. Fan, 2022: Intensified impact of the equatorial QBO in August–September on the northern stratospheric polar vortex in December–January since the late 1990s.Journal of Meteorological Research, 36, 703-717, https://doi.org/10.1007/s13351-022-2012-7.
33. Zhu B., B. Sun, and H. Wang, 2022: Increased interannual variability in the dipole mode of extreme high-temperature events over East China during summer after the early 1990s and associated mechanisms. Journal of Climate, 35, 1347-1364, https://doi.org/10.1175/JCLI-D-21-0431.1.
34. 雷徐奔, 张文君, 刘超, 2022: 夏季印度洋MJO活跃时间对中国长江流域降水日数的影响. 气象学报, 80, 503-514, https://doi.org/10.11676/qxxb2022.029.
35. Cai F., S. Yang, Z. Wang, J. Chen, J. Wang, and W. Chen, 2022: Triggering effect of an unusual northwestward-moving tropical cyclone over the Bay of Bengal on the extremely early Indian summer monsoon onset. Climate Dynamics, https://doi.org/10.1007/s00382-022-06603-8. (online)
36. Fu S., Z. Zhu, and R. Lu, 2022: Changes in the factors controlling Northeast Asian spring surface air temperature in the past 60 years. Climate Dynamics,https://doi.org/10.1007/s00382-022-06569-7. (online)
37. He J., J.-J. Luo, T. Doi, S. Liu, S. Tang and X. Wang, 2022: Understanding extremely pluvial winters over Yangtze–Huia river basin in China: their complexity and tropical oceans influences. Climate Dynamics, https://doi.org/10.1007/s00382-022-06614-5. (online)
其他资助论文:
1. Lin S., S. Yang, S. He, Z. Li, J. Chen, W. Dong, and J. Wu, 2022: Attribution of the seasonality of atmospheric heating changes over the western tropical Pacific with a focus on the spring season. Climate Dynamics, 58, 2575–2592, https://doi.org/10.1007/s00382-021-06020-3.
2. Wang Z., S. Yang, H. Luo, and J. Li, 2022: Drying tendency over the southern slope of the Tibetan Plateau in recent decades: Role of a CGT‑like atmospheric change. Climate Dynamics, 59, 2801-2813, https://doi.org/10.1007/s00382-022-06262-9.
3. Li Y., W. Zhou, S. Yang, R. Zhang, H. Cheung, and Y. Zhang, 2022: Recent early-spring drying trend over southern China associated with changes in the zonal thermal contrast over Pacific. Journal of Climate, 35(19), 2885-2896. https://doi.org/10.1175/JCLI-D-21-0891.1.
4. Tang S., J.-J. Luo, L. Chen, and Y. Yu, 2022: Distinct Evolution of the SST Anomalies in the Far Eastern Pacific between the 1997/98 and 2015/16 Extreme El Niños. Advances in Atmospheric Sciences, 39, 927-942, https://doi.org/10.1007/s00376-021-1263-z.
5. WeiJ., R. Hang, and J.-J. Luo, 2022: Prediction of Pan-Arctic Sea Ice Using Attention-Based LSTM Neural Networks. Frontiers in Marine Science, 9, 860403, https://doi.org/10.3389/fmars.2022.860403.
6. Feng P., B. Wang, I. Macadam, A. Taschetto, N. Abram, J.-J. Luo, A. King, Y. Chen, Y. Li, D. Liu, Q. Yu, and K. Hu, 2022: Increasing dominance of Indian Ocean variability impacts Australian wheat yields. Nature Food, 3, 862-870, https://doi.org/10.1038/s43016-022-00613-9.
7. Li, J., X. Hao, H. Liao, X. Yue, H. Li, X. Long, and N. Li, 2022: Predominant Type of Dust Storms That Influences Air Quality Over Northern China and Future Projections. Earth's Future, 10, e2022EF002649, https://doi.org/10.1029/2022EF002649.
8. Li J., X. Hao, H. Liao, Y. Wang, W. Cai, K. Li, X. Yue, Y. Yang, H. Chen, Y. Mao, Y. Fu, L. Chen and J. Zhu, 2022: Winter particulate pollution severity in North China driven by atmospheric teleconnections. Nature Geoscience, 15, 349-355, https://doi.org/10.1038/s41561-022-00933-2.
软件著作权:
1. 范怡, 2022: 极端气候时间序列年代际突变的多重检验系统V1.0
2. 于恩涛, 马洁华, 孙建奇, 王会军, 汪君, 2022: IAP-NZC动力降尺度气候预测系统1.0.
3. 马洁华, 孙建奇, 2022: 多模式优势信息提取、释用及集合预测系统1.0.